June 5, 2011 | David F. Coppedge

Genetic Entropy Confirmed

In Darwinian evolution, variations must add new information to produce innovations.  Neo-Darwinism ascribes those variations to genetic mutations.  In 2005, geneticist John Sanford (Cornell) argued that the accumulation of mutations always decreases fitness in a process he called “genetic entropy.”1 The downhill trend is amplified by a number of factors, including selection interference and epistasis (interactions between mutations).2  Now, genetic entropy from epistasis has received support by two new papers in Science.

For mutations under epistasis to produce innovation, there must be a way for them to work together (synergistic epistasis).  This is often assumed but has not been observed.  Most experiments have shown beneficial mutations working against each other (antagonistic epistasis; see 12/14/2006), or causing even less fitness than if they acted alone (decompensatory epistasis; see 10/19/2004).  In a new paper in Science,3 Khan et al, working with Richard Lenski [Michigan State], leader of the longest-running experiment on evolution of E. coli, found a law of diminishing returns with beneficial mutations due to negative epistasis.  The abstract said:

Epistatic interactions between mutations play a prominent role in evolutionary theories. Many studies have found that epistasis is widespread, but they have rarely considered beneficial mutations. We analyzed the effects of epistasis on fitness for the first five mutations to fix in an experimental population of Escherichia coli. Epistasis depended on the effects of the combined mutations—the larger the expected benefit, the more negative the epistatic effect. Epistasis thus tended to produce diminishing returns with genotype fitness, although interactions involving one particular mutation had the opposite effect. These data support models in which negative epistasis contributes to declining rates of adaptation over time.

Within the paper, they said, “We observed an overall negative relation, indicating that epistatic effects became more negative as the expected fitness rose….”  Near the conclusion, they confirmed witnessing a type of genetic entropy: “A conspicuous feature of the mean-fitness trajectory for this population—and indeed for most experimental populations evolving in a constant environment—is that the rate of adaptation declined over time.”  The reason they gave was that “epistatic interactions contribute greatly to this deceleration by reducing the effect-size of the remaining beneficial mutations as a population approaches a fitness peak. In other words, epistasis acts as a drag that reduces the contribution of later beneficial mutations.”  No increases in adaptation or fitness were observed, and no explanation was offered for how neo-Darwinism could overcome the downward trend in fitness.

Another paper in the same issue of Science found similar bad news.  A group of researchers in Massachusetts put “diminishing returns” in the title of their paper.4  They introduced beneficial mutations into bacteria, but found them decelerating adaptation.  Their abstract said, “These results provide the first evidence that patterns of epistasis may differ for within- and between-gene interactions during adaptation and that diminishing returns epistasis contributes to the consistent observation of decelerating fitness gains during adaptation.”  Aware of the study by Khan et al,  they claimed that “across these two distinct model systems 7 of 10 alleles consistently showed antagonism, whereas only 2 exhibited synergy.” 

A look in both papers, however, showed no clear examples of evolutionary progress in the experiments, and certainly no new species arising.  In fact, the experiments were more a test of artificial selection—studying which mutants adapted to contrived laboratory conditions.  In addition, fitness gains were measured by reproduction rates which, in some cases of adaptation, might have deleterious trade-offs, such as metabolic cost.

Commenting on these papers in Science,5 three authors from University of Pennsylvania noted that, “In Evolution, the Sum Is Less than Its Parts.”  The figure caption explained, “The mutations conferred smaller marginal benefits in combination than they did individually. This antagonistic epistasis causes progressively slower rates of adaptation over time.” Khryazhrimsky, Draghi and Plotkin referred to some microbe experiments that showed initial gains due to beneficial mutations (in isolated lab populations) that slowed to a crawl due to epistasis, or then “discover rare phenotypic innovations,” then diverge into populations that either coexist or compete.  More work will be needed, they said, to quantify these effects in the wild with different organisms, population sizes and natural ecologies. 

Though hopeful that evolution can march onward in spite of these genetic brakes, they admitted that “the prevalence of antagonistic epistasis measured by the two groups ensures a predictable tempo of adaptation characterized by diminishing marginal returns.”  They pulled victory from the jaws of defeat, claiming that these experiments “represent resounding achievement for the reductionist approach to studying biology.

A pro-evolution article in Science Daily summarized the work of the first paper thorough the eyes of Tim Cooper [U of Houston], one of the participants.  “The more mutations the researchers added, the more they interfered with each other,” was one of the “surprising” results.  “It was as if the mutations got in each other's way as they all tried to accomplish the same thing.”  Hopefully readers will pardon Cooper for the anthropomorphism.  “The effect of their interactions depended on the presence of other mutations, which turned out to be overwhelmingly negative.”  What does this mean for evolutionary progress?  “These results point us toward expecting to see the rate of a population’s fitness declining over time even with the continual addition of new beneficial mutations,” Cooper said.

In contrast to the depressing news in Science, three authors in Nature claimed hopeful news with mutations under epistasis.6  “Cryptic genetic variation promotes rapid evolutionary adaptation in an RNA enzyme” was the optimistic title of their paper, but a close look at their experiment shows it was a case of artificial selection on RNA ribozymes only.  It did not involve a real cell culture, and the gains from “cryptic variation” only showed adaptations to contrived conditions in the lab.  They explained the adaptation as a case of “pre-adaptation” or “exaptation” with mutations hiding out till an opportunity arrived for them to show some adaptation in the scientists’ contrived environments.  Their simplified model substituted for real evidence, because “this facilitating role for cryptic variation has not been proven, partly because most pertinent work focuses on complex phenotypes of whole organisms whose genetic basis is incompletely understood.”  Nevertheless, they claimed by extrapolation that “Our results highlight the positive role that robustness and epistasis can have in adaptive evolution.”  This paper came out in print a day before the pessimistic papers in Science.

Speaking of mutations, researchers at USC discovered “a chromosomal mutation responsible for a very rare condition in which people grow excess hair all over their bodies” (see Medical Xpress). While the benefit of such a condition might only count in the arctic, it shows that some mutations can have drastic effects.  Even if a hairy female could survive the cold, though, what male would want to marry her?   Such mutations would probably not become fixed in a population or else Eskimos would all have it.  Most mutations are nearly neutral and invisible to natural selection, as Sanford explained in detail in his book.  Because they are not eliminated by purifying selection, they therefore accumulate in the genome, dragging it into genetic entropy.  Mutations are not good material for natural selection.

1.  John Sanford, Genetic Entropy and the Mystery of the Genome (Ivan Press, 2005).
2. Ibid., pp. 109-111.
3. Khan et al., Negative Epistasis Between Beneficial Mutations in an Evolving Bacterial Population, Science, 3 June 2011: Vol. 332 no. 6034 pp. 1193-1196. DOI: 10.1126/science.1203801.
4. Chou et al., Diminishing Returns Epistasis Among Beneficial Mutations Decelerates Adaptation, Science, 3 June 2011: Vol. 332 no. 6034 pp. 1190-1192, DOI: 10.1126/science.1203799.
5. Khryazhrimsky, Draghi and Plotkin, In Evolution, the Sum Is Less than Its Parts, Science, 3 June 2011: Vol. 332 no. 6034 pp. 1160-1161, DOI: 10.1126/science.1208072.
6. Hayden, Ferrada and Wagner, Cryptic genetic variation promotes rapid evolutionary adaptation in an RNA enzyme, Nature, 474  (02 June 2011), pages 92–95, doi:10.1038/nature10083.

Only an evolutionist can find hope in this bad news. Re-read the 12/14/2006 and 10/19/2004 entries to see evolutionary hopes get further dashed.  And even if an evolutionist can claim a real fitness innovation arose spontaneously, the organism will face newer and bigger hurdles (see 04/09/2007).

Mutations are like weights on a swimmer, loading him down.  Beneficial mutations are so small, they are mere bubbles providing a tiny bit of buoyancy.  Now get other swimmers with weights clinging to him to illustrate epistasis; do you think he will evolve wings and fly?  Get real.  Even if one of them has lifeguard training, it will only delay the inevitable.  Remember, evolution has no direction and cannot see the shoreline.

Get John Sanford’s book; it will scare some genetic sense into any Darwinist.  Sanford was asked what has been the reaction to his book by Darwinists.  His answer was, “complete silence.”

(Visited 1,182 times, 1 visits today)


  • John_Michael says:

    Woo – Hoo !!
    My first post on CEH !! So Cool!
    Thanks for all the hard work that you do for us Dave,
    along with the whole team at CEH.

    I was trying to decide what “user name” to use. I was thinking about Dragonfly. Dragonflies are a kind of icon of creation?

    There are so many great postings on CEH.
    But, it’s these kind of articles that I really look forward to.

    Instead of Neo-Darwinian assumptions of how life works, more and more we’re learning how life really does and doesn’t function. Biology is so much more interesting, when the truck loads of “BS”
    is hauled away …. Hold on, can I use the word function? That’s very close to using the word purpose? There’s a dangerous word, “PURPOSE” …. But I digress ….

  • Mats says:

    Fantastic. The darwinists’ silence shows that they know how damaging this scientific information is.

  • bornagain77 says:

    Congrats on the new site, and Thanks for all your hard work.

  • Dustino says:

    What I gather from this is that the rate of fitness declines through diminishing returns. But the *rate* of fitness towards a specified peak becoming slower and slower doesn’t really support genomes deteriorating does it? I mean fitness is still increasing, just a slower rate overtime. Right?

  • Coreysan says:

    Dustino, I don’t know if anyone responded to you, but your question got me thinking. Thanks for your thoughts. First, it seems to me that you’re assuming that the rate of fitness is in fact moving toward a specified peak. But our webmaster wrote, “Remember, evolution has no direction and cannot see the shoreline.” Secondly, it seems to me that “time” is an argument from assumption. In other words, given enought time… etc. The point of this article, as I understand it, is that genetic entropy and epistasis occurs regardless of how much time has elapsed. Neo-Darwinists assume that given enough time, mutations will produce positive results, while this article is demonstrating that mutations can only go so far and no futher. At least, that’s how I understand it!


  • radar says:

    You absolutely have one of the best Creationist sites on the internet.  I love pointing people to this site.  You are the experts at taking what Darwinists say and turning it around on them and whopping them upside the head with it!

  • Rhed says:

    In the 2004 paper the net effect is still positive. Am I reading that correctly?

Leave a Reply