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The Heart of Modern Probability Theory 

It is truth very certain that, when it is not in ow· power to 
determine what is true, we ought to follow what is most 
probable. 

-Rene Descartes1 

SciENTISTS CANNOT SAY how the world came to be or how life 
began. There was no human observer on the scene to record 
with technical data whether God created or things just evolved. 
Until one arrives at faith in the Bible record, the only logical 
course is to use inductive reasoning and follow what is most 
probable. Let us begin now to learn the main rules of probability. 
We will need only two central principles. Here is the first, some­
times called the "law of averages." 

The Law of Large Numbers 
Probability theory applies mainly to "long runs." If you toss 

a coin just a few times, the results may vary a lot from the 
average. As you continue the experiment, however, it levels out 
to almost absolute predictability. This is called the "law of large 
numbers." Here is how physicist George Gamow stated it: 

Thus whereas for 2 or 3, or even 4 tosses, the chances to 
have heads each time or tails each time are still quite ap­
preciable, in 10 tosses even 90 per cent of heads or tails is 
very improbable. For a still larger number of tosses, say 190 
or 1000, the probability curve becomes as sharp as a needle, 

1 In Darrel Huff and Irving Geis, How To Take a Chance (New York: W. W. 
Norton & Co., 1959), p. 7. 
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and the chances of getting even a small deviation from fifty­
fifty distribution becomes practically nil. 2 

The long run serves to average out the fluctuations that you 
may get in a short series. These variations are "swamped" by 
the long-haul average. When a large number of tries is in­
volved, the law of averages can be depended upon quite closely. 
This rule, once called the "law of great numbers," is of central 
importance in this field of probability. By the way, in the 
popular sense, probability theory, the laws of chance, and the 
science of probability can be considered to be simply different 
expressions for the same general subject. 

Make Your Experiments Scientific 
To be exact, the theory of probability deals not with material 

objects, but with ideal theoretical models or mental pictures. 
If we use objects that are reasonably identical, however, the 
results of our experiments will be close to the same as with 
the abstract mathematical models on which the laws are based. 

When we do experiments such as coin tosses or drawings of 
numbered objects, it is important to insure that there is equal 
likelihood of the different outcomes or "events" as they are called. 
If one of the objects to be drawn is heavier than the others, it 
may tend to settle to the bottom of the group, thus giving results 
that are inaccurate. Different rules might be involved if the 
various possible results are not made equally probable. 

In selecting coins or letters at random, they must, of course, 
be thoroughly mixed before each drawing. If they are not shaken 
sufficiently, the same one that was just drawn might remain near 
the top to be more easily drawn again. Objects also should be 
drawn without looking, to avoid the possibility that the choice 
is influenced by sight of the various objects. The purpose is to 
find out what chance can do, and chance is blind. 

If other articles are used instead of coins, they should as nearly 
as possible be the same size and shape and weight. This makes 
the experiment more scientific and assures more accurate results. 
Experimenting may mean more to you if first you read on a few 
pages farther. 

The Multiplication Rule (Learn It Well!) 
We now come to the most important rule of all for the 

2 George Gamow, One, Two, Three-Infinity (New York: Viking Press, 1961), 
p. 209. 
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purposes of our study. It is the second of the two principles. 
Let's go back to the ten numbered coins. Why is there only 
one chance in one hundred that we will get the number one 
coin on the first draw followed by the number two coin on 
the next draw? 

Here is the principle involved, as described clearly by Adler: 
"Break the experiment down into a sequence of small steps. 
Count the number of possible outcomes of each step. Then 
multiply these numbers."a This important "multiplication rule" 
is most often used where the various outcomes of a particular 
step are all equally probable and the steps are independent. 

In the experiment with ten similar coins numbered one through 
ten, we want to know the probability of getting the number 
one coin on the first try followed by the number two coin on 
the second try. Divide this into steps as Adler suggested. Our 
first step will be to draw one coin. There are ten different out­
comes we could get on that first draw. There are also ten dif­
ferent possible results when we get to the second step. Multi­
plying, as Adler said, we have 10 x 10 = 100. So, the chance 
is 1 in 100 of getting the two desired coins in order. The proba­
bility is 1/100, on the average. 

Before the first draw, we know intuitively that there is a 
1-out-of-10 chance of success in getting the number one coin.4 
Therefore, whatever chance the second step will have must be 
multiplied by 1/ 10, because there is only that 1/ 10 chance 
of success on the first step. But the second step also has 1/10 
probability of success. As we have just seen, that will have to 
be multiplied by the 1/10 probability from step one. This will 
give the answer for both steps together, which is 1/100. If such 
an experiment is continued long enough, about once in every 
hundred draws the number one coin will be followed by the 
number two. Remember, however, the law of large numbers. 
There will be deviations unless you do several hundred and 
average them. 

The principle is: If you seek first "this outcome" and then 
"that outcome," the probability of getting both is the p1'0duct 
of their separate probabilities, in cases where one outcome does 
not affect the other. George Gamow said it in these words: 

3 Irving Adler, Probability and Statistics for Everyman (New York: John Day 
Co., 1963), pp. 58, 59. 

4 This probability arises partly because of equivalence or symmetry, and we 
sense its logic. 
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Here we have the rule of "multiplication of probabilities," 
which states that if you want several different things, you 
may determine the mathematical probability of getting them 
by multiplying the mathematical probabilities of getting the 
several individual ones.5 

Perhaps this may seem to be much ado about a minor point. 
Some who are mathematically minded or knew the principle 
beforehand may have gotten it easily. For most people, how­
ever, it is hard to believe that the chances are that slim-just 
one in one hundred. This is the average outcome one can expect. 

It will be worthwhile to stay with this matter until thorough­
ly convinced that it is true. One's mind may be slow to accept 
the idea. Darrell Huff wrote that "even intelligent adults con­
fuse addition with multiplication of probabilities." That is why 
actual experimenting may be such a help. Much depends on 
becoming certain in one's own thinking that this is correct. A 
little later, we will suggest quicker methods for experimenting 
that will lead to the certainty of the truth of this rule. 

This one point is absolutely vital to the whole process of this 
approach to certainty. It may be mastered by rereading and 
by experimenting as described a little farther on, and by pon­
dering the matter until one's mind will accept its truth. All 
probability theory used in science and industry builds from this 
multiplication rule. 

Can Chance Count to Ten? 
What is the probability of drawing all ten coins in order? 

Remember the multiplication rule. For each of these steps, 
there are ten possible outcomes. For all ten steps, we must 
multiply ten by itself until the figure is used ten times: 10 x 10 x 
10 x 10 x 10 x 10 x 10 x 10 x 10 x 10 = 10,000,000,000. So, the 
chances are quite small of getting all ten in a row. Once in ten 
billion selections we will get the number one followed in order 
by all the rest. Chance will succeed on the average only once 
in ten billion attempts. 

To absorb the meaning of that fully is to be well on the 
way to the assurance that we seek. Chance requires ten billion 
tries on the average in order to count to ten! 

Shorten Your Experiment Time 

The reader has doubtless already realized that the experiment 

5 Gamow, One, Two, Three-Infinity, p. 208. 
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with ten coins is too long for any reasonable chance of success 
if done properly. If a person could draw and record one coin 
every five seconds day and night, it would take over 1,500 years 
to complete the time in which one success could be expected! 
In all that time, the outlook is for chance, on the average, to 
succeed just once in counting to ten. 

Perhaps we get the gist of the idea that chance is not very 
capable when we need an ordered result. Consider the difference 
intelligence makes-even a limited intelligence. Give an eight­
year-old the coins, and ask the child to arrange and pick up 
each one in order and return it. Chance is blind, and has no 
intelligence. The child is not thus limited. The child can do it 
in a few moments. Chance takes 1,500 years-just to count to 
ten once. 

The same principle can be learned with shorter experiments, 
using fewer coins. If you try it with three or four or five num­
bered coins long enough to average out any short-run fluctua­
tions, you will see that the rules hold true. With five coins, 
the probability of getting the number one and the number two 
in order on the first two draws is naturally 1 in 5 x 5 = 1 in 25. 

In tossing a coin, the probability of four heads in a row is 
1/2 x 1/2 x 1/2 x 1/2 = 1/16. What would be the probability 
of ten heads in a row? 

To Spell "Evolution" by Chance 
Suppose, instead of numbers, we use the letters of the alpha­

bet. As a substitute for coins, any small, similarly shaped objects 
may be used if they are practically identical in si_ze, weight, and 
shape. (The party game called "Scrabble" has small letters on 
wooden squares quite suitable for this.) 

With one set of the twenty-six letters of the alphabet, you 
have 1/26 probability of getting the "A" on the first draw. To 
get "A" followed by "B" (replacing the letter after each draw, 
as before) your probability by the multiplication rule is: 1/26 x 
1/ 26 = 1/676. To get ABC in order, the chance is 1 in 17,.576, 
by the same rule. 6 

To spell the word "evolution," obtaining the nine letters in 
order, each having a 1/26 probability, you have a probability 

6 We tried such an experiment at the Center for Probability Research in Bi­
ology. In 30,000 alphabet letters drawn, only once did we get ABC in order! 
(Of course, there were other reasons for the experiment. TI1e main purpose is 
explained in chapter 6 where it provides an analogy for usable and nonsense 
chains of amino acids.) 
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of 1 in 5,429,503,678,976. This, as you will realize, comes from 
multiplying 26 by itself, using the figure 9 times. If every five 
seconds day and night a person drew out one letter, he could 
expect to succeed in spelling the word "evolution" about once in 
800,000 years! 

Further Tests for Chance 
Suppose we put chance to a test which is less simple, yet 

something that would be quite easy for any school child. Let 
it spell this phrase: "the theory of evolution." Drawing from a 
set of twenty-six small letters and one blank for the space be­
tween letters, what is the probability expectance? 

All that is needed is simply to get those twenty-three letters 
and spaces in proper order, selecting them at random from the 
set of twenty-seven objects (twenty-six letters and one space) . 
By the multiplication rule we learned, it will be 27 x 27 x 2V ... 
x 27 using the figure twenty-three times. 

1 

The probability when computed is 1 in approximately 8.34,-
390,000,000,000,000,000,000,000,000,000; that is, one success in 
over 8 hundred million trillion trillion draws. 

To get an idea of the size of that number, let us imagine that 
chance is employing an imaginary machine which will draw, 
record, and replace the letters at the speed of light, a BILLION 
draws PER SECOND! Working at that unbelievable rate, chance 
could spell "the theory of evolution" once in something over 
26,000,000,000,000,000 years on the average ! 

Again, a child could do it in a few minutes. Chance would 
take more than five million times as long as the earth has existed 
(if we use the five-hillion-year rounded figure which some evolu­
tionists now estimate as the age of the earth). 

If we are drawing from a set which contains both small 
letters and capital letters and one blank for the space between 
words to spell "The Theory of Evolution," the probability is 
1 in 4,.5!5.3,.500,000,000,000,000,000,000,000,000,000,000,000. Our 
machine drawing at the speed of light, a billion draws per sec­
ond, would require 140,000,000,000,000,000,000,000 years. That 
is 28,000,000,000,000 times the assumed age of the earth! 

Chance Is Moronic 
So chance requires twenty-eight trillion times the age of the 

earth to write merely the phrase: "The Theory of Evolution," 
drawing from a set of small letters ami capitals as described, 
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drawing at the speed of light, a billion draws per second/1 Only 
once in that time could the letters be expected in proper order. 

Again, a child can do this, using sight and intelligence, in a 
few minutes at most. Mind makes the difference in the two 
methods. Chance really "doesn't have a chance" when compared 
with the intelligent purpose of even a child. 

"In the beginning, God . . .  " begins to appear more scientific, 
as we see how limited are the abilities of mindless chance. 

Perhaps the alphabet experiments just described may help to 
emphasize how important it is fully to understand the multi­
plication rule we studied earlier. It's hard to believe at first. 
Try drawing alphabet letters for a few hours to become really 
convinced! Remember in doing so that chance has no intelli­
gence, no purpose. It cannot purposefully choose one correct 
letter and discard unwanted ones until it finds the next one 
needed. 

In the next two chapters, we will make some actual use of 
what we have learned. We are to apply probability theory to 
the strange phenomenon of the "left-handed" molecules which 
are used in proteins. We will use that as a practice field in ap­
plying the laws of chance. It is ideal for this, because only two 
possible outcomes are involved for each step. It is similar, there­
fore, to the experiment of tossing a coin. 

Special Nate to the Reader 
Most of this book is in plain, easy-to-understand language. In 

a few places, however, we must go far enough into certain areas 
of biology to apply the laws of chance in logical manner. This 
will require the use of a small amount of mathematics, but not 
much-mostly just arithmetic. It is a necessary part of the proc­
ess in gaining certainty by the approach wh�ch we are following. 

For the reader who happens to have an absorbing interest in 
biology, it is unlikely to involve any strain or confusion as a rule. 

Perhaps, on the other hand, you have only a casual interest 
in the details of science. Does that rule out the value to you of 
this method of seeking assurance on evolution? Not at all. A 
great number of people may not have any engrossing interest 
in biology, and yet may attain that valuable certainty. 

7 The imaginary machine is considered as moving slightly less than a foot per 
draw, round trip. The letter is recorded during the return trip so that no time 
is taken up except the actual travel, round trip, of .98 foot at the speed of light, 
to allow 1,000,000,000 draws per second. 
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If you plow on through any places that seem somewhat tech­
nical, you will at least get the general idea and you will soon 
be back into easier reading. In the process, you will realize 
that the actual facts and figures are there in print for anyone 
who wishes to dig into the subject more thoroughly. The con­
clusions, moreover, are always in easily grasped speech. Without 
the actual reasoning and figures, and without the references, the 
reader would have little to depend on except an author's words, 
and that is a poor basis for certainty. Don't worry, then, if you 
strike sections that you do not quickly comprehend completely. 
Just read on through. You can return later to those sections 
that you may wish to reread. 

Before going on, we will confess that (to the horror of mathe­
maticians) we have oversimplified a bit, to make the ideas ac­
cessible to people not trained in mathematics. The recurrent 
phrase, "on the average," needs more explaining when it is used 
with experiments which are repeated. The footnote below goes 
into this, for the noncasual reader.8 Now, let's look at left-handed 
molecules. 

8 Our figuring thus far has been the kind where "success" was getting a cer­
tain result once, on the average in a series of trials. Now, consider the different 
concept of at least once: the desired event may happen once or more than once, 
but the main thing is that it happens at all. 

1f we draw from ten coins (with replacement), what is the probability that 
the No. 1 coin will show up at lea5t once if we make two draws? Here is what 
can happen: ( 1) We may obtain the No. 1 coin iu5t once from the two draws; 
( 2) we may get it both times; or ( 3) not at all. Either the first or the second 
of these results would be a "success," because in each the event occurs: "No. 1 
coin at least once." 

'vVe see that success can happen in more than one way, but failure can 
happen just one way. We therefore first figure the chance of failure. It is 9/ lO 
on any one draw, and we can use the multiplication rule for two draws, because 
we need failure both times-"this and that." 9/10 x 9/10 = 81/100. Now to 
find the chance of success: 

Always, if one adds the probability of success and the probability of failure, 
the total is exactly one. We can obtain the probability of success by subtracting 
81/100 from 100/100 (which is the same as one). The answer is 19/100, the 
chance of getting the No. 1 coin at least once. A mathematician might write 
the formula thus: where n is the number of draws, and p is the probability of 

,successlin one draw: p11 = 1-( 1-p)n. 
With the large figures we will encounter, it would make virtually no difference 

if we used this more exact method, so we will save confusion by figuring the 
much simpler probability on the ave·rage. Chapter 10 will give more details on 
this. (The difference between the two methods is less than just adding one to 
an exponent of ten. The exact method would be even harder on evolution.) 


